

Strukturen von Pentaarylbismut-Verbindungen

Arno Schmuck, Dieter Leopold, Stephan Wallenhauer und Konrad Seppelt*

Freie Universität Berlin, Institut für Anorganische und Analytische Chemie, Fabeckstraße 34-36, D-1000 Berlin 33

Eingegangen am 2. Oktober 1989

Key Words: Bismuth organic compounds, square pyramidal / Fluorinated aromatic rings / Lithium chloride tetrahydrofuran structure

Structures of Pentaarylbismuth Compounds

Rose-colored, dichroitic pentakis(4-methylphenyl)bismuth has an intermediate structure between trigonal bipyramidal and square-pyramidal. It cocrystallizes with (LiCl \cdot 2 THF)₂. The LiCl forms an almost regular rectangle with two short (195 pm) and two long (235 pm) bonds. Red Bi(4-CH₃C₆H₄)₃(2,6-F₂C₆H₃)₂ is very similar to square pyramidal Bi(C₆H₅)₃(2,6-F₂C₆H₃)₂: The structural isomerism of yellow Bi(4-CH₃C₆H₄)₃(2-FC₆H₄)₂ (trigonal bipyramidal) and violet Bi(C₆H₅)₃(2-FC₆H₄)₂ (square pyr-

Kürzlich haben wir durch Strukturuntersuchungen an verschiedenen Bismutpentaarylen gezeigt, wie die auffallende Lichtabsorption und der Dichroismus dieser Verbindungen zu erklären sind^{1,2,3}). Diese optischen Phänomene sind an die quadratisch-planare Struktur gebunden, die Lichtabsorption entspricht einer HOMO-LUMO-Anregung, bei der das auffallend niedrige LUMO in die sechste, leere Ecke des Koordinationsoktaeders weist, während das HOMO vorwiegend basalen Ligandcharakter hat³⁾. Wird dieses niedrige LUMO durch Koordination eines sechsten Phenylrings gefüllt, wie bei Lithium-hexaphenylbismutat, LiBi(C₆H₅)₆, ist die HOMO-LUMO-Anregung im sichtbaren Wellenlängenbereich nicht mehr möglich, und die Verbindung ist gelb⁴⁾. Diese Untersuchungen eines für ein Hauptgruppenelement ungewöhnlichen Farbphänomens setzen wir hiermit durch weitergehende Variation der Phenylgruppen fort.

Den sich wiederholenden Entscheidungen, ob eine Verbindung quadratisch-pyramidal oder trigonal-bipyramidal ist, liegt eine Winkeldefinition zugrunde, die auch Übergänge zwischen beiden Idealstrukturen definieren kann²). Diese Definition entspricht in leicht abgeänderter Weise einer älteren Definition des gleichen geometrischen Problems^{5,6}) und ist in vereinfachter Form die Reaktionskoordinate des Berry-Mechanismus⁷).

Bi(4-CH₃C₆H₄)₅

Pentakis(4-methylphenyl)antimon, Sb(4-CH₃C₆H₄)₅, ist trigonal-bipyramidal aufgebaut⁸), und es stellte sich die Frage, ob Bi(4-CH₃C₆H₄)₅ diesem Vorbild folgt, genauso wie Sb(C₆H₅)₅ und Bi(C₆H₅)₅ praktisch übereinstimmende, allerdings quadratisch-pyramidale Strukturen haben^{1,9}). Aber die Herstellung der Verbindung in reinem Zustand machte bis-

amidal) is not found here. Orange red, dichroitic $Bi(C_6H_5)_{3^-}(C_{12}H_6)$ remains in a distorted square pyramidal structure in spite of the constraints of the 2,2'-biphenylylene ring system. The square pyramidal geometry seems to dominate in bismuth chemistry of this type, in contrast to P, As, and Sb. However, the structure of $(C_6F_5)_3BiF_2$ shows an almost regular trigonal bipyramid, as expected. The latter cocrystallizes as $(C_6F_5)_3BiF_2 \cdot 2 Bi(C_6F_5)_3$, so the structure of $Bi(C_6F_5)_3$ is elucidated also.

lang unüberwindliche Schwierigkeiten. Es gelang bisher nur die Isolierung eines kristallinen Addukts Bi(4-CH₃C₆H₄)₅ · LiCl · 2 THF. Diese Verbindung hat eine violette Farbe und ist deutlich dichroitisch. Wenn es allein auf die Natur der Substituenten ankäme, würde für Bi(4-CH₃C₆H₄)₅ eine tiefere Farbe als für Bi(C₆H₅)₅ erwartet. Die Farbaufhellung [UV (THF) Bi(C₆H₅)₅, $\lambda_{max} = 532$ nm, Bi(4-CH₃C₆H₄)₅, $\lambda_{max} = 521$ nm] ist aber offensichtlich auch eine Folge der Struktur: Das Bi(4-CH₃C₆H₄)₅-Molekül ist nach der Winkeldefinition² mit $\Delta = 37$ °C eine Zwischenform zwischen trigonal-bipyramidaler ($\Delta = 60^{\circ}$) und quadratisch-pyramidaler ($\Delta = 0^{\circ}$) Struktur, jedoch geringfügig näher an letzterer. Es bleibt ungeklärt, inwieweit diese spezielle Struktur

Abb. 1. SCHAKAL-Zeichnung eines Moleküls Bi(4-CH₃C₆H₄)₅. Die Abzählung der Ringkohlenstoffatome erfolgt fortlaufend. Das Bismutatom und die direkt gebundenen Kohlenstoffatome sind der Übersicht halber schraffiert. Die Molekülgeometrie ist irregulär, jedoch näher an einer quadratischen Pyramide

(Abb. 1) eine Folge der Cokristallisation oder der *para*-Methylsubstitution ist. Cokristallisationen mit Lösungsmittelmolekülen wurden schon bei As $(C_6H_5)_5 \cdot 1/2 C_6H_{12}^{10}$ und Sb $C_6H_5 \cdot 1/2 C_6H_{12}^{11}$ beobachtet und scheinen eine Folge der letztlich wenig symmetrischen Strukturen aller dieser Verbindungen zu sein. Allzuoft werden bei Synthesen von BiAryl₅-Verbindungen farbige Öle erhalten, die nicht zur Kristallisation zu bringen sind.

Der Solvatteil von Bi(4-CH₃C₆H₄)₅ · LiCl · 2 THF hat ein gewisses Interesse, weil er ein planares, rautenförmiges Li₂Cl₂-Molekül enthält mit d(LiCl) = 237.5(5), 241.2(5) pm, Winkel Cl – Li – Cl 107.9°, s. Abb. 2. Diese Bindungslängen sind sicher etwas zu groß, weil ca. 20% des Cl⁻ durch Br⁻ ersetzt sind. Die Koordination des Lithiums wird durch zwei THF-Moleküle auf vier erhöht. Diese Anordnung scheint ein typisches Bauprinzip der Lithiumhalogenide zu sein. So liegt LiCl im Gaszustand bei 820°C ebenfalls als rautenförmiges Li₂Cl₂ vor [d(LiCl) 223.0(60) pm] mit Winkel Cl – Li – Cl 108(8)°^{12,13}. LiBr kristallisiert aus Aceton völlig analog¹⁴, und kürzlich wurde LiCl · 2 THF bei tiefen Temperaturen ohne Begleitstoffe kristallisiert. Die Bindungsabstände und Winkel sind im Rahmen der Meßgenauigkeit gleich¹⁵.

Abb. 2. SCHAKAL-Zeichnung von $(LiCl \cdot 2 THF)_2$ in Bi(4-CH₃-C₆H₄)₅ · LiCl · 2 THF

Bi(4-CH₃C₆H₄)₃(2,6-F₂C₆H₃)₂

Diese Bismutverbindung wurde untersucht, um den Einfluß der *para*-Methylsubstitution zu studieren. Die Verbindung hat praktisch dieselbe quadratisch-pyramidale Struktur wie Bi $(C_6H_5)_3(2,6-F_2C_6H_3)_2^2$, s. Abb. 3. Auch die Farbigkeit beider Verbindungen ist ununterscheidbar. Beides war nicht zu erwarten, weil Bi $(C_6H_5)_3(2-FC_6H_4)_2$ und Bi $(4-CH_3C_6H_4)_3(2-FC_6H_4)_2^3$ sehr unterschiedliche Strukturen und Farben haben, nämlich im Kristall fast regulär quadratischpyramidal (violett) bzw. trigonal-bipyramidal (orange). In Lösung beobachtet man die gleiche Mischfarbe für beide Verbindungen, die auf die Anwesenheit beider Strukturen bei beiden Verbindungen in Lösung hinweist.

Es ist also offensichtlich so, daß die *para*-Methylsubstitution nur über die geringfügige Änderung des Packungsverhaltens einen bestimmenden Einfluß auf die Struktur hat.

 Abb. 3. SCHAKAL-Zeichnung von Bi(4-CH₃C₆H₄)₃(2,6-F₂C₆H₃)₂.
 Die Abzählung der Ringkohlenstoffatome erfolgt wie in Abb. 1. Die Molekülgeometrie ist nahe einer quadratischen Pyramide

Bi(C6H5)3(C12H8)

Die Strukturuntersuchung dieser bereits 1969 hergestellten Verbindung¹⁶⁾ wurde unternommen, um den Einfluß zu studieren, der durch die Verknüpfung von zwei Phenylgruppen und damit durch die Aufhebung der typischen propellerartigen Verdrillung erreicht wird. Die Verbindung ist orangerot und dichroitisch. Letzteres deutete auf die quadratisch-pyramidale Struktur hin, die allerdings erhebliche Abweichungen von der Idealgestalt aufweist ($\Delta = 28^{\circ}$), siehe Abb. 4. Im Gegensatz zur Verdrillung der Phenylgruppen in Bi(C₆H₅)₅¹⁾ ist der tricyclische Bi(C₁₂H₈)-Molekülteil nahezu eben. Der 2,2'-Biphenylylenligand nimmt eine doppelt basale Stellung ein, und der BiC₂-Winkel ist mit 72° viel kleiner als erwartet ($\approx 90^{\circ}$).

Abb. 4. SCHAKAL-Zeichnung des Moleküls I von Bi(C₆H₅)₃-(C₁₂H₈). Die Abzählung der Ringkohlenstoffatome erfolgt wie in Abb. 1. Das Molekül II hat etwas abweichende Bindungswinkel am Bismutatom, siehe Tab. 6. Die Atomnumerierung von Molekül II enthält jeweils eine 2 in der ersten Stelle

$(C_6F_5)_3BiF_2 \cdot 2 Bi(C_6F_5)_3$

Versuche, Bi(C₆F₅)₅ herzustellen, blieben bislang erfolg- \log^{2} . Zwar ist Bi(C₆F₅)₃ eine bekannte Verbindung, aber die Chlorierung zu $(C_6F_5)_3BiCl_2$ gelingt bereits nicht mehr. Offensichtlich ist durch den starken Elektronenzug der drei Pentafluorphenylgruppen das Oxidationspotential der dreiwertigen Stufe bereits so erhöht, daß nur noch Fluorierung möglich ist. Schließlich existiert auch nur BiF5, während BiCl₅ unbekannt ist und in jedem Fall sehr instabil sein dürfte¹⁷⁾. Die erfolglose Weiterreaktion von $(C_6F_5)_3BiF_2$ mit LiC₆F₅ ist schon beschrieben worden²⁾. Bei der Darstellung von $(C_6F_5)_3BiF_2$ erhielten wir in einem solcher Ansätze farblose hydrolyse- und temperaturunempfindliche Kristalle, die sich als $(C_6F_5)_3BiF_2 \cdot 2 Bi(C_6F_5)_3$ herausstellten (Abb. 5). In diesem Addukt von drei und fünfwertigen Bismutverbindungen haben die bismutgebundenen Fluoratome Brückenfunktion, auch wenn sie wegen ihres Abstandes eindeutig zum fünfwertigen Bismut gerechnet werden müssen. Daraus ergibt sich das Paradoxon, daß das koordinativ ungesättigte Bi⁵⁺ nicht etwa als Acceptor, sondern als F-Donator gegenüber koordinativ normalem pyramidalen Bi³⁺ fungiert.

Abb. 5. SCHAKAL-Zeichnung von $(C_6F_5)_3BiF_2 \cdot 2 Bi(C_6F_5)_3$. Die Abzählung der Ringkohlenstoffe und der Fluoratome der Ringe erfolgt fortlaufend. Auffallend ist die Bi(V) - F - Bi(III)-Brücke, bei der koordinativ ungesättigtes Bi(V) als Donormolekül gegenüber koordinativ gesättigtem Bi(III) fungiert

 $(C_6F_5)_3BiF_2$ verhält sich strukturell also durchaus anders als BiF₅, welches lineare (vermutlich symmetrische) Fluorbrücken bildet, so daß Bi hier oktaedrisch koordiniert ist¹⁸). $(C_6F_5)_3BiF_2$ ist also isostrukturell mit $(C_6H_5)_3BiCl_2^{19}$, $(C_6F_5)_3$ -AsF₂²⁰ und vielen anderen trigonal-bipyramidalen Verbindungen dieses Typs.

Das Molekül Bi $(C_6F_5)_3$ ist ähnlich aufgebaut wie Bi $(C_6-H_5)_3^{21}$ und hat eine ganz gewöhnliche pyramidale Struktur mit Bindungswinkeln am Bismut zwischen 93 und 98°.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit sowie Herrn Prof. Dr. D. Hellwinkel, Heidelberg, für die Überlassung von 2,2'-Diiodbiphenyl und dem Graduierten-Kolleg "Synthese und Struktur von Molekülverbindungen" für ein Stipendium (S. W.).

Experimenteller Teil

Die Handhabung der hydrolyseempfindlichen Substanzen erfolgte in einem Handschuhkasten mit automatischer Gasreinigung der Fa. Braun GmbH, Oberschleißheim; Trockenheit 0.1 - 1.0 ppm $H_2O/Argon. - {}^{19}F-$ und ${}^{1}H-NMR$: FX 90 Q der Fa. Jeol, CFCl₃ bzw. TMS als externer Standard. - Massenspektren: Varian MAT 711, EI, 80 eV. - UV: Perkin-Elmer Lambda 9.

Bi(4-CH₃C₆H₄)₃Cl₂²²⁾, Bi(C₆H₅)₃Cl₂^{2,23)}, Bi(C₆F₅)₃^{2,24)} und Bi(C₆-F₅)₃F₂²⁾ wurden nach Literaturangaben hergestellt.

Die Messung der Röntgenreflexintensitäten wurde auf einem Stoe- bzw. einem Enraf-Nonius-Vierkreisdiffraktometer vorgenommen. Die Arbeitstechnik der Montierung von Einkristallen unter Tieftemperaturbedingungen ist in Lit.²⁵⁾ beschrieben. Mo- K_{α} -Strahlung mit Graphit-Monochromator, ω - Θ -Scan. Die Absorptions-korrektur erfolgte mit dem Programm DIFABS²⁶⁾. Die Strukturen wurden durch Patterson-Synthese erhalten und mit der vollen Matrix verfeinert, Programme: SHELX, XTAL.

Kristallographische Daten der Kristallstrukturuntersuchungen enthält Tab. 1. Besonderheiten werden bei den einzelnen Verbindungen zusammengefaßt. Weitere Einzelheiten können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54169, der Autoren und des Zeitschriftenzitats angefordert werden.

Pentakis(4-methylphenyl)bismut, LiCl · THF · Cokristallisat, $Bi(4-CH_3C_6H_4)_5 \cdot LiCl \cdot 2 THF$: Zu einer Lösung von 3.3 g (6.0 mmol) (4-CH₃C₆H₄)₃BiCl₂²²⁾ in 50 ml wasserfreiem Diethylether tropft man bei -78°C langsam eine Lösung von 12 mmol Tolyllithium in Diethylether. Die anfangs bräunliche Suspension wird innerhalb 2 h auf -10°C erwärmt und 8 h bei -78°C gerührt. Den entstandenen violetten Feststoff läßt man absitzen, dekantiert die braunviolette Lösung unter Schutzgas und wäscht den violetten Niederschlag zweimal, indem man in je 10 ml Diethylether suspendiert, unter Schutzgas zentrifugiert und die überstehende Lösung verwirft. Den Rückstand löst man in ca. 30 ml THF, zentrifugiert erneut unter Schutzgas und isoliert die überstehende Lösung. Nach Einengen im Hochvak. wird Bi(4-CH₃C₆H₄)₅ · LiCl · 2 THF bei -25°C kristallin erhalten, Schmp. 111°C (Zers.), Ausb. 1.0 g (20%). – Bi(4-CH₃C₆H₄)₅ ist in Lösung und als Feststoff thermisch instabiler als Bi(C₆H₅)₅ und ist gut löslich in THF, schlecht löslich in Diethylether und *n*-Pentan. – UV (THF, 20°C): $\lambda_{max} = 521$ nm.

Bei der Analyse der Kristallstruktur wurde gefunden, daß das Cl⁻-Atom eine viel höhere Elektronendichte als normal aufwies. Eine chemische Analyse ergab, daß das Cokristallisat außer Chlorid auch noch kleinere ($\approx 20\%$) Mengen an Bromid aufwies, vermutlich eingeschleppt bei der Herstellung von *p*-Tolyllithium aus 4-Bromtoluol. Die Verfeinerung der Struktur mit einer entsprechenden mittleren Elektronendichte (80% Cl, 20% Br) ergab in der Tat erheblich bessere kristallographische Charakteristika. Da die Kristallisation ohnehin eine zufällige war, haben wir es bei diesem Ergebnis belassen.

Bis (2,6-difluorphenyl) tris (4-methylphenyl) bismut, Bi(4-CH₃-C₆H₄)₃(2,6-F₂C₆H₃)₂: Zu einer Lösung von 1.37 g (7.1 mmol) 1-Brom-2,6-difluorbenzol in 30 ml wasserfreiem Et₂O tropft man bei -78 °C innerhalb 5 min 6.8 mmol BuLi (1.6 M Lösung in *n*-Hexan). Die frisch bereitete Lösung von 2,6-Difluorphenyllithium wird dann kontinuierlich mit Argon durch einen kleinen Teflonschlauch in eine bei -78 °C gerührte Suspension von 1.88 g (3.4 mmol) (4-CH₃C₆H₄)₃BiCl₂²²⁾ in 20 ml wasserfreiem Et₂O gedrückt. Dabei entsteht eine dicke gelbe Suspension. Innerhalb 2 h erwärmt man auf Raumtemp. und zentrifugiert unter Schutzgas den entstandenen feinkristallinen Niederschlag ab. Von der überstehenden orangefarbenen Lösung wird das Lösungsmittel im Hochvak. entfernt. Anschließend kondensiert man 20 ml *n*-Hexan und vorsichtig soviel Et₂O auf, daß bei 30°C gerade alles in Lösung geht. Die Kristal-

	Bi(4-CH₃C6H₄)5 · LiCl · 2 THF	Bi(4-CH ₃ C ₆ H ₄) ₃ (2,6-F ₂ C ₆ H ₃) ₂	$Bi(C_6H_5)_3(C_{12}H_8)$	(C ₆ F ₅) ₃ BiF ₂ 2 Bi(C ₆ F ₅) ₃
a [pm]	1161.9(4)	1075.1(7)	1004.9(2)	1315.3(3)
b [pm]	1204.0(4)	1825.7(7)	1286.1(2)	1743.7(3)
c [pm]	1555.0(12)	1471.6(15)	1903.2(5)	2569.4(4)
∝ [ື]	109.67(5)	90.0	70.54(2)	90.0
ßǰĪ	104.74(4)	97.05(7)	76.31(2)	90.0
ý [°]	95.77(3)	90.0	80.17(1)	90.0
$V [10^6 \text{ pm}^3]$	1939.4	2866.6	2242.2	5892.6
Z	2	4	4	4
Raumgruppe	P 1	$P2_1/n$	P1	Pcan (Nr. 50)
Kristallgröße [mm]	$0.3 \times 0.5 \times 0.6$	$0.2 \times 0.4 \times 0.6$	$0.3 \times 0.5 \times 1.2$	$0.4 \times 0.4 \times 0.6$
Temperatur [°C]	-145	-30	-138	+25
Θ	2-20°	2-25°	2-20°	2-25°
Oktanden	$\pm h, \pm k, +l$	$\pm h$, $+k$, $\pm l$	$\pm h, \pm l$	$\pm h$, $+k$, $+l$
Reflexe				
gemessene	3808	5233	3859	10951
unabhängige	3375	4850	3679	5193
mit $I \geq 3\sigma(I)$	3006	3394 (≥2σ <i>I</i>)	3097	1984
Parameter	253	189	290	335
<i>R</i> ^{a)}	0.078	0.058	0.048	0.061
$R_{w}^{a)}$	0.071	0.058	0.042	0.034

Tab. 1. Kristallographische Daten der Bismutverbindungen

^{a)} C isotrop verfeinert.

Tab. 2. Fraktionelle Atomkoordinaten von $Bi(4-CH_3C_6H_4)_5 \cdot LiCl \cdot 2 THF$

BI $0.2004(1)$ $0.0258(1)$ $0.1921(1)$ LI $0.0663(53)$ $0.5652(51)$ $0.4761(42)$ CL $0.1312(5)$ $0.479(5)$ $0.5955(4)$ C2 $0.3064(29)$ $0.5039(28)$ $0.4218(23)$ C3 $0.3787(35)$ $0.6252(35)$ $0.4221(28)$ C4 $0.3023(38)$ $0.6471(37)$ $0.3500(30)$ C5 $0.1641(33)$ $0.5528(33)$ $0.3054(27)$ C7 $0.2151(31)$ $0.8134(30)$ $0.6272(25)$ C8 $0.1407(32)$ $0.9020(32)$ $0.6662(25)$ C9 $0.0803(32)$ $0.9390(32)$ $0.5817(26)$ C10 $0.0675(32)$ $0.8184(31)$ $0.4916(25)$ C11 $0.3199(24)$ $0.2030(23)$ $0.2188(19)$ C12 $0.4360(27)$ $0.2451(27)$ $0.2813(22)$ C13 $0.5148(26)$ $0.3498(25)$ $0.2266(20)$ C14 $0.4811(26)$ $0.4053(25)$ $0.2266(20)$ C15 $0.3658(29)$ $0.3691(29)$ $0.1580(23)$ C16 $0.2883(26)$ $0.2634(25)$ $0.1511(21)$ C17 $0.5665(34)$ $0.5141(33)$ $0.2354(27)$ C21 $0.0670(28)$ $-0.1597(28)$ $0.1465(23)$ C22 $0.0344(27)$ $-0.2927(27)$ $0.1911(22)$ C23 $-0.0457(29)$ $-0.3541(29)$ $0.0322(23)$ C24 $-0.0871(28)$ $-0.3743(27)$ $0.195(23)$ C22 $0.0370(26)$ $0.2290(25)$ $0.2063(21)$ C33 $-0.0726(25)$ $0.2714(24)$ $0.1966(20)$ C34 $-0.1835(27)$				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	BI	0.2004(1)	0.0258(1)	0.1921(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LI	0.0863(53)	0.5652(51)	0.4761(42)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL	0.1312(5)	0.4799(5)	0.5955(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.3064(29)	0.5039(28)	0.4218(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.3787(35)	0.6252(35)	0.4261(28)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.3023(38)	0.6471(37)	0.3500(30)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CS	0.1641(33)	0.5528(33)	0.3054(27)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	0.2151(31)	0.8134(30)	0.6272(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ca	0.1407(32)	0.9020(32)	0.6662(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.0803(32)	0.9390(32)	0.5817(26)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0.0675(32)	0.8184(31)	0.4916(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.3199(24)	0.2030(23)	0.2108(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.4360(27)	0.2451(27)	0.2813(22)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.5148(26)	0.3498(25)	0.2896(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.4811(26)	0.4053(25)	0,2266(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.3658(29)	0,3691(29)	0.1580(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.2883(26)	0.2634(25)	0.1511(21)
$\begin{array}{cccccc} C21 & 0.0670(28) & -0.1597(28) & 0.1465(23) \\ C22 & 0.0344(27) & -0.2440(27) & 0.0570(22) \\ C23 & -0.0457(29) & -0.3541(29) & 0.0322(23) \\ C24 & -0.0871(28) & -0.3743(27) & 0.1911(22) \\ C25 & -0.0575(27) & -0.2927(27) & 0.1911(22) \\ C26 & 0.0219(27) & -0.1797(26) & 0.2152(21) \\ C27 & -0.1775(30) & -0.4976(29) & 0.0759(24) \\ C31 & 0.0245(27) & 0.0923(26) & 0.1487(21) \\ C32 & 0.0370(26) & 0.2290(25) & 0.2063(21) \\ C34 & -0.1835(25) & 0.1917(25) & 0.1311(20) \\ C35 & -0.1831(27) & 0.0796(26) & 0.00921(20) \\ C37 & -0.2983(27) & 0.294(24) & 0.0921(20) \\ C37 & -0.2983(27) & 0.2418(27) & 0.1257(22) \\ C41 & 0.3352(29) & -0.0832(28) & 0.1375(23) \\ C42 & 0.3291(30) & -0.1996(30) & 0.1330(24) \\ C43 & 0.4257(31) & -0.2617(31) & 0.1163(25) \\ C44 & 0.5275(31) & -0.1993(31) & 0.1045(25) \\ C45 & 0.5351(29) & -0.079(28) & 0.1098(23) \\ C47 & 0.6355(36) & -0.2681(36) & 0.0897(29) \\ C51 & 0.2563(27) & 0.0639(27) & 0.3469(22) \\ C52 & 0.3120(30) & -0.0126(29) & 0.3815(23) \\ C54 & 0.3371(26) & 0.1173(28) & 0.5146(23) \\ C55 & 0.2798(28) & 0.1735(28) & 0.5146(23) \\ C55 & 0.2798(28) & 0.1735(28) & 0.5146(23) \\ C55 & 0.2798(28) & 0.1735(28) & 0.5146(23) \\ C56 & 0.2385(29) & 0.1735(28) & 0.5146(23) \\ C57 & 0.3842(32) & 0.1145(30) & 0.6550(25) \\ O1 & 0.1792(18) & 0.5095(17) & 0.3889(15) \\ O2 & 0.181(19) & 0.7469(19) & 0.5305(15) \\ O2 & 0.5181(19) & 0.7469(19) & 0.5305(15) \\ O2 & 0.181(19) & 0.7469(19) & 0.5305(15) \\ O2 & 0.181(19) & 0.7469(19) & 0.5305(15) \\ O2 & 0.181(19) & 0.7469(19) & 0.5305(15) \\ O3 & 0.536(15) & 0.5095(17) & 0.3889(15) \\ O3 & 0.538(15) & 0.5095(17) & 0.3889(15) \\ O3 & 0.538(15) & 0.0595(17) & 0.3889(15) \\ O3 & 0.5385(15) & 0.05$	C17	0.5665(34)	0.5141(33)	0.2354(27)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.0670(28)	-0.1597(28)	0.1465(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.0344(27)	-0.2440(27)	0.0570(22)
$\begin{array}{cccccc} & -0.0871(28) & -0.3743(27) & 0.1056(23) \\ c25 & -0.0575(27) & -0.2927(27) & 0.1911(22) \\ c26 & 0.0219(27) & -0.1797(26) & 0.2152(21) \\ c27 & -0.1775(30) & -0.4976(29) & 0.0759(24) \\ c31 & 0.0245(27) & 0.0923(26) & 0.1487(21) \\ c32 & 0.0370(26) & 0.2290(25) & 0.2063(21) \\ c33 & -0.0726(25) & 0.2714(24) & 0.1966(20) \\ c34 & -0.1835(25) & 0.1917(25) & 0.1311(20) \\ c35 & -0.1831(27) & 0.0796(26) & 0.0822(21) \\ c36 & -0.0751(25) & 0.0294(24) & 0.0921(20) \\ c37 & -0.2983(27) & 0.2418(27) & 0.1375(23) \\ c42 & 0.3291(30) & -0.1996(30) & 0.1335(24) \\ c43 & 0.4257(31) & -0.2617(31) & 0.1163(25) \\ c44 & 0.5275(31) & -0.1993(31) & 0.1045(25) \\ c45 & 0.5351(29) & -0.0779(28) & 0.1098(23) \\ c46 & 0.4443(30) & -0.2681(36) & 0.0897(29) \\ c51 & 0.2563(27) & 0.0639(27) & 0.3469(22) \\ c52 & 0.3120(30) & -0.0126(29) & 0.3469(22) \\ c53 & 0.3561(29) & 0.0124(29) & 0.4836(23) \\ c54 & 0.3371(26) & 0.1147(25) & 0.5460(20) \\ c55 & 0.2798(28) & 0.1933(28) & 0.5146(23) \\ c56 & 0.2385(29) & 0.1735(28) & 0.4145(23) \\ c57 & 0.3842(32) & 0.1735(28) & 0.4145(23) \\ c57 & 0.3842(32) & 0.1735(28) & 0.4145(25) \\ c41 & 0.1792(18) & 0.5095(17) & 0.3859(15) \\ c75 & 0.1792(18) & 0.5095(17) & 0.3859(15) \\ c75 & 0.381(19) & 0.7469(19) & 0.5305(15) \\ c75 & 0.381(19$	C23	-0.0457(29)	-0.3541(29)	0.0322(23)
$\begin{array}{cccccc} & -0.0575(27) & -0.2927(27) & 0.1911(22) \\ c26 & 0.0219(27) & -0.1797(26) & 0.2152(21) \\ c27 & -0.1775(30) & -0.4976(29) & 0.0759(24) \\ c31 & 0.0245(27) & 0.0923(26) & 0.1487(21) \\ c32 & 0.0370(26) & 0.2290(25) & 0.2063(21) \\ c33 & -0.0726(25) & 0.2714(24) & 0.1966(20) \\ c34 & -0.1835(25) & 0.1917(25) & 0.1311(20) \\ c35 & -0.1831(27) & 0.0796(26) & 0.0822(21) \\ c36 & -0.0751(25) & 0.0294(24) & 0.0921(20) \\ c37 & -0.2983(27) & 0.2418(27) & 0.1257(22) \\ c41 & 0.3352(29) & -0.0832(28) & 0.1375(23) \\ c42 & 0.3291(30) & -0.1996(30) & 0.1330(24) \\ c43 & 0.4257(31) & -0.2617(31) & 0.1163(25) \\ c44 & 0.5275(31) & -0.2617(31) & 0.1163(25) \\ c44 & 0.5275(31) & -0.2681(36) & 0.0897(29) \\ c51 & 0.2563(27) & 0.0639(27) & 0.3469(22) \\ c52 & 0.3120(30) & -0.0126(29) & 0.3815(23) \\ c53 & 0.3561(29) & 0.0124(29) & 0.3485(23) \\ c54 & 0.3371(26) & 0.1145(30) & 0.5460(20) \\ c55 & 0.2798(28) & 0.1735(28) & 0.5146(23) \\ c56 & 0.2385(29) & 0.1735(28) & 0.5146(23) \\ c57 & 0.3842(32) & 0.1415(30) & 0.6550(25) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3889(15) \\ 02 & 0.3181(19) & 0.7469(19) & 0.5305(15) \\ 02 & 0.3181(19) & 0.7469(19) & 0.5305(15) \\ 02 & 0.3181(19) & 0.7469(19) & 0.5305(15) \\ 02 & 0.3181(19) & 0.7469(19) & 0.5305(15) \\ 02 & 0.3181(19) & 0.7469(19) & 0.5305(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3889(15) \\ 02 & 0.3181(19) & 0.7469(19) & 0.5305(15) \\ 02 & 0.3181(19) & 0.7469(19) & 0.5305(15) \\ 02 & 0.3181(19) & 0.7469(19) & 0.5305(15) \\ 02 & 0.3181(19) & 0.7469(19) & 0.5305(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3889(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3889(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3869(15) \\ 01 & 0.1792(18) & 0.$	C24	-0.0871(28)	-0.3743(27)	0.1056(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	-0.0575(27)	-0.2927(27)	0.1911(22)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26	0.0219(27)	-0.1797(26)	0.2152(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27	-0.1775(30)	-0.4976(29)	0.0759(24)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.0245(27)	0.0923(26)	0.1487(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32	0.0370(26)	0.2290(25)	0.2063(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33	-0.0726(25)	0.2714(24)	0.1966(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34	-0.1835(25)	0.1917(25)	0.1311(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ç35	-0.1831(27)	0.0796(26)	0.0822(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36	-0.0751(25)	0.0294(24)	0.0921(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C37	-0.2983(27)	0.2418(27)	0.1257(22)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C41	0.3352(29)	-0.0832(28)	0.13/5(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42	0.3291(30)	-0.1996(30)	0.1330(24)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C43	0.4257(31)	-0.2617(31)	0.1163(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C44	0.5275(31)	-0.1993(31)	0.1045(25)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C45	0.5351(29)	-0.0779(28)	0.1098(23)
$\begin{array}{ccccccc} C47 & 0.6355(36) & -0.2681(36) & 0.0897(29) \\ C51 & 0.2563(27) & 0.0639(27) & 0.3469(22) \\ C52 & 0.3120(30) & -0.0126(29) & 0.3815(23) \\ C53 & 0.3561(29) & 0.0124(29) & 0.4836(23) \\ C54 & 0.3371(26) & 0.1147(25) & 0.5460(20) \\ C55 & 0.2798(28) & 0.1933(28) & 0.5146(23) \\ C56 & 0.2385(29) & 0.1735(28) & 0.4145(23) \\ C57 & 0.3842(32) & 0.1415(30) & 0.6550(25) \\ 01 & 0.1792(18) & 0.5095(17) & 0.3859(15) \\ 02 & 0.1381(19) & 0.7469(19) & 0.5305(15) \\ \end{array}$	C46	0.4443(30)	-0.0242(29)	0.1336(24)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	047	0.6355(36)	-0.2681(36)	0.0897(29)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C51	0.2563(27)	0.0639(27)	0.3469(22)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	052	0.3120(30)	-0.0126(29)	0.3815(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	053	0.3561(29)	0.0124(29)	0.4836(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	054	0.33/1(26)	0.114/(25)	0.5460(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	055	0.2798(28)	0.1735(28)	0.5146(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030	0.2385(29)	0.1/03(28)	0.4143(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0.3842(32)	$0.1413(30)^{-1}$	0.0000(20)
	02	0,1772(18)	0.7469(19)	0.5305(15)

lisation erfolgt bei 0°C, das Produkt wird unter Schutzgas isoliert. Man erhält rotorangefarbene rhombische Kristalle, die keinen Dichroismus zeigen und bei 112°C unter Zersetzung schmelzen. Ausb. 0.70 g (29%). Das Produkt scheint nur schwach hydrolyseempfindlich zu sein: Trockene Kristalle waren nach 1 h bei

Tab. 3. Fraktionelle Atomkoordinaten von Bi(4-CH₃C₆H₄)₃(2,6-F₂C₆H₃)₂

BI	0.1396(0)	0.1171(0)	0.2539(0)
F42	-0.0202(7)	0.2616(4)	0.1400(6)
F46	0.1621(9)	0.0440(5)	0.0583(6)
F52	0.2353(10)	-0.0490(5)	0.2228(7)
F56	0.2566(11)	0.0988(5)	0.4806(6)
C11	0.3291(10)	0.1610(7)	0.2320(8)
C12	0.4397(11)	0.1299(6)	0.2739(9)
C13	0.5589(12)	0.1609(7)	0.2611(9)
C14	0.5616(12)	0.2298(7)	0.2043(10)
C15	0.4522(12)	0.2525(7)	0.1629(10)
C16	0.3379(11)	0.2209(7)	0.1760(9)
C21	0.0824(10)	0.2060(6)	0.3409(8)
C22	0.1577(12)	0.2653(7)	0.3600(9)
C23	0.1198(12)	0.3249(7)	0.4124(10)
C24	0.0054(12)	0.3229(7)	0.4412(10)
C25	-0.0720(13)	0,2650(7)	0.4239(10)
C26	-0.0339(12)	0.2049(7)	0.3717(9)
C31	-0.0349(11)	0.0471(7)	0.2479(9)
C32	-0.0488(13)	-0.0013(7)	0.3188(10)
C33	-0.1654(13)	-0.0392(8)	0.3180(11)
C34	-0.2618(12)	-0.0279(7)	0.2539(9)
C35	-0.2502(13)	0.0203(7)	0.1852(10)
C36	-0.1351(12)	0.0569(7)	0.1820(10)
C41	0.0739(10)	0.1520(7)	0.1028(8)
C 4 2	0.0082(11)	0.2133(7)	0.0747(9)
C43	-0.0286(12)	0.2309(7)	-0.0151(10)
C44	-0.0007(13)	0.1838(8)	-0.0789(11)
C45	0.0626(14)	0.1190(8)	-0.0597(11)
C46	0.0981(13)	0.1052)8)	0.0324(10)
C51	0.2415(11)	0.0278(7)	0.3488(9)
C 5 2	0.2675(13)	-0.0402(8)	0.3110(11
C53	0.3245(13)	-0.0980(7)	0.3598(11)
C54	0.3558(15)	-0.0883(9)	0.4487(12)
C55	0.3352(15)	-0.0238(9)	0.4937(13)
C56	0.2773(13)	0.0321(8)	0.4389(11
C141	0.6888(15)	0.2512(9)	0.1854(12)
C241	-0.0392(15)	0.3897(8)	0.4939(12)
C341	-0.3855(14)	-0.0673(8)	0.2574(12)

Tab. 4. Fraktionelle Atomkoordinaten von $Bi(C_6H_5)_3(C_{12}H_8)$

Tab. 5.	Fraktionelle	Atomkoordinaten	von $(C_6F_5)_3BiF_2$	$\cdot 2 \operatorname{Bi}(C_6F_5)$
---------	--------------	-----------------	-----------------------	-------------------------------------

311	0.2300(1)	0.4093(1)	0.3525(0)
312	0.2279(1)	0.1061(1)	0.1305(0)
C111	0.2982(17)	0.5500(13)	0.3694(9)
0112	0.3147(17)	0.6477(14)	0.3110(10)
C113	0.3679(18)	0.7352(15)	0.3210(10)
0114	0.4013(18)	0.7242(15)	0.3888(10)
2115	0.3812(18)	0.6288(14)	0.4473(10)
0116	0.3303(18)	0.5431(15)	0.4373(10)
0121	0.4245(17)	0.2949(13)	0.3836(9)
0122	0.4004(17)	0,2175(13)	0.4523(9)
C123	0.5133(19)	0.1471(15)	0.4790(10)
0124	0.6421(21)	0.1553(16)	0.4348(11)
2125	0.6700(22)	0.2336(16)	0.3646(11)
0126	0.5581(18)	0.3025(14)	0.3381(10)
0131	0.1502(17)	0.2868(13)	0.4680(9)
0132	0,2606(18)	0.2115(14)	0.4978(10)
0133	0.2223(18)	0.1352(14)	0.5679(10)
0134	0.0878(19)	0.1297(15)	0.6007(10)
0135	-0.0176(20)	0.2007(15)	0.5716(10)
0136	0.0172(18)	0.2820(14)	0.5028(10)
C141	0.0130(19)	0.4864(15)	0.3359(10)
C142	-0.0587(18)	0.4522(14)	0.2930(9)
C143	-0.1870(20)	0.4975(15)	0.2854(11)
C144	-0.2560(20)	0.5748(16)	0.3194(10)
C145	-0.1933(19)	0.6053(15)	0.3647(10)
C146	-0.0571(18)	0.5631(14)	0.3713(10)
C151	0.2862(18)	0.4139(14)	0.2308(10)
0152	0.2434(17)	0.5068(14)	0.1749(9)
C153	0.2767(18)	0.5174(45)	0.0962(10)
C154	0.3617(20)	0.4300(15)	0.0745(11)
0155	0.4087(20)	0.3411(16)	0.1292(10)
0156	0.3/81(17)	0.3297(14)	0.2000(10)
0211	0.1542(18)	-0.0443(14)	0.1273(7)
C212	0.1319(10)	-0.1439(14)	0.0513(10)
0213	0.0979(20)	-0.1437(16)	0.0312(12)
C214 COVE	0.0484(19) 0.0475(19)	-0.2247(16)	0.1209(10)
0213	0.04/5(19)	=0.2127(10)	0.1919(10)
0210	0.1007(18)	0.0203(14)	0.1711(9)
0222	0.4303(17)	0.0238(15)	0.2445(10)
C223	0.4271(17)	-0.0159(13)	0.2740(10)
C224	0.6598(19)	-0.0577(15)	0.2349(10)
0224	0.6649(21)	-0.0658(16)	0.1666(11)
C226	0.5536(18)	-0.0241(14)	0,1320(10)
C231	0.1878(18)	0.1082(14)	0.2525(10)
C232	0.0603(18)	0.1465(14)	0.2890(10)
C233	0.0433(18)	0.1321(14)	0,3671(9)
C234	0.1472(18)	0.0788(14)	0.4056(10)
C235	0.2729(17)	0.0438(13)	0.3665(9)
C236	0,2896(17)	0.0610(13)	0.2902(9)
C241	0.0203(18)	0.2173(14)	0.1174(9)
C242	0.0174(18)	0.3311(14)	0.0970(9)
C243	-0.1113(21)	0.3987(18)	0.0961(11)
C244	-0.2336(22)	0.3483(17)	0.1175(11)
C245	-0.2290(19)	0.2324(14)	0.1427(10)
C246	-0.1045(20)	0.1708(17)	0.1359(11)
C251	0.3333(19)	0.1979(15)	0.0129(10)
C252	0.4720(18)	0.2050(14)	-0.0098(10)
C253	0.5219(19)	0.2697(14)	-0.0833(9)
C254	0.4358(19)	0.3239(16) 0.3132(14)	-0.1344(11) -0.1129(10)
0233	0.2772(10)	0.2507(16)	-0 0382(11)

Raumtemp. an der Luft kaum verändert. Bi $(4-CH_3C_6H_4)_3(2,6-F_2C_6H_3)_2$ ist gut löslich in THF und Et₂O, schlecht löslich in *n*-Hexan.

2,2'-Biphenylylentriphenylbismut, $Bi(C_6H_5)_3(C_{12}H_8)$: Die Herstellung erfolgte nach Lit.¹⁶. Geeignete Kristalle werden durch Umkristallisation aus THF erhalten.

Tris(pentafluorphenyl)bismutdifluorid, Cokristallisat mit Tris-(pentafluorphenyl)bismut, $(C_0F_5)_3BiF_2 \cdot 2Bi(C_0F_5)_3$: Eine Suspension von 10 g (14.1 mmol) frisch sublimiertem Bi $(C_0F_5)_3^{2.249}$ in 100 ml trockenem CH₂Cl₂ wird auf -35 °C abgekühlt. Für den Feuchtigkeitsausschluß wird ein mit Kel-F-Öl gefülltes Gärröhrchen verwendet. Im Argon-Gegenstrom werden 3.3 g (19.7 mmol) XeF₂ zugegeben, wobei sich die farblose Suspension binnen Sekunden gelb färbt. Die Reaktion ist exotherm. 1 h wird bei -40 °C gerührt, anschließend auf -70 °C abgekühlt und innerhalb 20 h auf Raumtemp. erwärmt. Danach ist in der gelben Lösung ein Niederschlag suspendiert. Die Reaktion wird NMR-spektroskopisch kon-

	·		
811	0.1737(0)	0.0290(0)	0.0641(0)
812	0.2139(1)	0.0000(0)	0.2500(0)
Fl	0.2093(7)	0.0175(5)	0.1696(3)
F112	0.3344(7)	-0.0289(7)	-0.0425(4)
F113	0.3102(8)	-0.0185(6)	-0.1420(4)
F114	0.1442(8)	0.0521(7)	-0.1847(4)
F115	0.0005(9)	0.1061(6)	-0.1208(5)
F116	0.0218(7)	0.0965(6)	-0.0165(4)
F122	0.4211(6)	0.0192(5)	0.1140(4)
F123	0.5533(8)	-0.0967(6)	0.1171(5)
F124	0.5030(8)	-0.2368(6)	0.0815(5)
F125	0.3167(9)	-0.2586(6)	0.0371(5)
F126	0.1873(7)	-0.1423(6)	0.0289(4)
F132	0,3996(8)	0.1055(7)	0.0157(4)
F133	0.4956(10)	0.2373(6)	0.0367(5)
F134	0.4136(9)	0.3408(7)	0.1006(7)
F135	0.2371(10)	0.3100(7)	0.1502(6)
F136	0.1388(8)	0.1771(6)	0.1320(5)
F212	0.3789(8)	0.1193(5)	0.2090(4)
F213	0.4159(8)	0.1207(7)	-0.2893(5)
F214	0.6857(10)	0.0000(0)	0.2500(0)
F222	-0.0025(8)	-0.0684(6)	0.2873(4)
F223	0.8980(9)	0.1989(7)	0.2368(5)
F224	-0.0138(9)	-0.3036(6)	0.2011(4)
F225	0.1798(9)	-0.2807(6)	0.1664(5)
F226	0.2748(7)	-0.1498(5)	0.1873(4)
C111	0.1762(12)	0.0337(10)	-0.0240(6)
C112	0.2489(12)	0.0059(9)	-0.0598(7)
C113	0.2366(12)	0.0109(10)	-0.1138(7)
C114	0.1545(13)	0.0448(10)	-0.1325(8)
C115	0.0828(13)	0.0759(10)	-0.1004(7)
C116	0.0961(13)	0.0690(10)	-0.0486(7)
C121	0.3006(11)	-0.0564(9)	0.0680(7)
C122	0.3929(15)	-0.0482(11)	0.0923(7)
C123	0,4609(14)	-0.1073(11)	0.0962(7)
C124	0,4368(15)	-0.1789(12)	0.0778(8)
C125	0.3435(15)	-0.1895(12)	0.0556(8)
C126	0.2773(14)	-0.1309(10)	0.0513(6)
C131	0.2669(12)	0.1368(9)	0.0732(7)
C132	0.3570(13)	0.1533(11)	0.0494(7)
C133	0.4071(15)	0.2213(12)	0,0569(8)
C134	0.3659(16)	0.2748(13)	0.0920(9)
C135	0.2757(16)	0.2603(13)	0.1145(8)
C136	0,2278(15)	0.1899(11)	0.1063(8)
C211	0.3800(14)	0.0000(0)	0.2500(0)
C212	0.4292(13)	0.0605(11)	0.2316(7)
C213	0.5338(15)	0.0629(12)	0.2313(7)
C214	0.5843(20)	0.0000(0)	0.2500(0)
C221	0.1350(13)	-0.1088(10)	0.2361(6)
C222	0.0397(14)	-0.1207(12)	0.2588(8)
C223	-0.0096(14)	-0.1897(11)	0.2449(8)
C224	0.0368(14)	-0.2389(11)	0.2139(7)
C225	0.1334(14)	-0.2303(11)	0.1952(7)
C226	0.1822(14)	-0.1618(9)	0.2061(6)

trolliert. Ist das XeF₂ fast vollständig umgesetzt, werden weitere 2.3 g XeF₂ (13.6 mmol) zugegeben, und erneut wird 24 h bei Raumtemp. gerührt. Die Lösung ist gelb und enthält einen farblosen Feststoff, der oberhalb 320 °C schmilzt (BiF₃). Man engt die überstehende Lösung im Hochvak. auf ca. 20 ml ein und läßt bei -30 °C kristallisieren. Die erhaltene Verbindung sintert bei 53 °C und ist bei 155 °C geschmolzen. (C₆F₅)₃BiF₂ ist löslich in CH₂Cl₂ und CH₃-CN, unlöslich in *n*-Hexan. - ¹⁹F-NMR (in CH₂Cl₂, gegen CFCl₃ ext.): $\delta = -60.2$ (BiF), 2 F; -125.1 (*o*), 2 F; -141.8 (*p*), 1 F; -154.6 (*m*), 2 F.

Erfolgt die Kristallisation von $(C_6F_3)_3BiF_2$ in CH_2Cl_2 bei $-10^{\circ}C$, so zersetzt sich ein kleiner Teil der Verbindung zu einem gelblichen feinverteilten Niederschlag, der sich beim Erwärmen nicht mehr vollständig in Lösung bringen läßt. In einem Fall bildeten sich nach 2 d große farblose Kristalle, die im Gegensatz zu $(C_5F_3)_3BiF_2$ nicht hydrolyseempfindlich waren und bei 159 °C schmolzen. Das ¹⁹F-NMR-Spektrum der Kristalle in CH₂Cl₂ zeigte die Spektren von $(C_6F_5)_3BiF_2$ und Bi $(C_6F_5)_3$ im Integrationsverhältnis 1:2. Das Cokristallisat konnte auch durch stöchiometrisches Zusammengeben der Komponenten im Verhältnis 1:2 erhalten werden. Alle untersuchten Kristalle zeigten gleichermaßen relativ breite Reflexe, was natürlich zur Folge hatte, daß schwächere Reflexe als unbeobachtet eingestuft wurden. Von zwei vollständigen Datensätzen wurde derjenige verwendet, der geringfügig bessere Ergebnisse brachte.

Tab. 6. Ausgewählte Bindungslängen [pm] und -winkel [°] der Bismutverbindungen

Bi(4-CH ₃ C ₆ H ₄) ₅ ·LiCl·2THF		$Bi(4-CH_3C_6H_4)_3(2,6-F_2C_6H_3)_2$ F,F markiert Kohlenstoffatome der difluorierten Ringe	
231(3)	BiC11	225(1)	
236(3)	Bi-C21	220(1)	
229(3)	Bi-C31	226(1)	
228(3)	Bi - C41(F,F)	234(1)	
220(3)	Bi - C51(F,F)	230(1)	
171(1)	C11-Bi-C31	163.1(4)	
145(1)	C41-Bi-C51	145.6(4)	
237.5(5), 241.2(5)			
196(6), 203(6)			
	2 <i>THF</i> 231(3) 236(3) 229(3) 228(3) 220(3) 171(1) 145(1) 237.5(5), 241.2(5) 196(6), 203(6)	$\begin{array}{cccc} Bi(4-CH_3C_6H_4)_3(2.6-H_2)_3(2.6-H_3)_3(2.6-$	

 $Bi(C_6H_5)_3(C_{12}H_8)$

(B) markiert C-Atome des Biphenylylenliganden

Molekül I		Molekül II	
Bi1-C111	214(2)	Bi2C211	223(2)
Bi1-C121 (B)	232(2)	Bi2-C221 (B)	218(3)
Bi1-C131 (B)	232(2)	Bi2-C231 (B)	229(2)
Bi1-C141	230(2)	Bi2-C241	228(2)
Bi1-C151	223(2)	Bi2-C251	225(3)
C121-Bi1-C141	166.8(6)	C221-Bi2-C241	162.9(6)
C131-Bi1-C151	138.0(6)	C231-Bi2-C251	141.2(7)
C121 – Bi1 – C131	76.4(6)	C221 – Bi2 – C231	76.5(6)
$Bi(C_6F_5)_3BiF_2 \cdot 2 Bi(C_6F_5)_3BiF_2 \cdot 2 BiF_2 \cdot 2 Bi$	₅ F ₅) ₃		
Bi1-C111	227(2)	Bi2-C211	218(2)
Bi1-C121	224(2)	Bi2-C221	219(2)
Bi1-C131	226(2)	Bi2-F1	208.8(8)
Bi1 … F1	275.9(8)	F1-Bi2-C211	91.6(2)
C111-Bi1-C121	93.4(6)	F1-Bi2-C221	87.2(5)
C111 - Bi1 - C131	93.7(6)	C211-Bi2-C221	118.3(4)
C121-Bi1-C131	98.3(6)	F1-Bi2-F1'	180

CAS-Registry-Nummern

- ¹⁾ A. Schmuck, J. Buschmann, J. Fuchs, K. Seppelt, Angew. Chem. **99** (1987) 1206; Angew. Chem. Int. Ed. Engl. **26** (1987) 1180.

- ⁹⁹ (1987) 1206; Angew. Chem. Int. Eu. Engl. 20 (1987) 1165.
 ²⁾ A. Schmuck, K. Seppelt, Chem. Ber. 122 (1989) 803.
 ³⁾ A. Schmuck, P. Pyykkö, K. Seppelt, Angew. Chem., im Druck.
 ⁴⁾ D. Hellwinkel, G. Kilthau, Liebigs Ann. Chem. 705 (1967) 66.
 ⁵⁾ D. McGrand, M. M. Schwall, E. Martinetter, J. Martinetter, Science, Scie
- ⁵⁾ R. Hoffmann, J. M. Howell, E. L. Muetterties, J. Am. Chem. Soc.
- 94 (1972) 3047 ⁶⁾ E. L. Muetterties, L. J. Guggenberger, J. Am. Chem. Soc. 96
- (1974) 1748. ⁷⁾ R. S. Berry, J. Chem. Phys. 32 (1960) 933, Rev. Mod. Phys. 32
- (1960) 447; E. Teller, J. A. Wheeler, Phys. Rev. 53 (1938) 778. ⁸⁾ C. Brabant, J. Hubert, A. L. Beauchamp, Can. J. Chem. 51 (1973)
- 2952
- ⁹⁾ P. J. Wheatley, J. Chem. Soc. 1964, 3718; A. L. Beauchamp, M. J. Bennett, F. A. Cotton, J. Am. Chem. Soc. 90 (1968) 6675.
 ¹⁰⁾ C. P. Brock, D. F. Webster, Acta Crystallogr., Sect. B, 32 (1976)
- 2089.
- ¹¹⁾ C. Brabant, B. Blanck, A. L. Beauchamp, J. Organomet. Chem. 82 (1974) 271.
- ¹²⁾ S. H. Bauer, T. Ino, R. F. Porter, J. Chem. Phys. 33 (1960) 685.
 ¹³⁾ P. A. Akishin, N. G. Rambidi, Zh. Neorg. Khim. 5 (1960) 23; J.
- Inorg. Chem. (USSR) (Engl.) 5 (1960) 10.
- ¹⁴ R. Amstutz, J. D. Dunitz, T. Laube, W. B. Schweizer, D. Seebach, Chem. Ber. 119 (1986) 434.
- ¹⁵ E. Hahn, TU Berlin, persönliche Mitteilung.
 ¹⁶ D. Hellwinkel, M. Bach, *Liebigs Ann. Chem.* 720 (1969) 198.

- ¹⁷⁾ K. Seppelt, Z. Anorg. Allg. Chem. 434 (1977) 5.
 ¹⁸⁾ C. Hebecker, Z. Anorg. Allg. Chem. 384 (1971) 111.
 ¹⁹⁾ D. M. Hawley, G. Ferguson, J. Chem. Soc. A 1968, 2539.
 ²⁰⁾ H.Preut, R. Kasemann, D. Naumann, Acta Crystallogr., Sect. C, 42 (1972) 42 (1986) 1875
- ²¹⁾ D. M. Hawley, G. Ferguson, J. Chem. Soc. A 1968, 2059.
- ²²⁾ A. Michaelis, A. Marquardt, *Liebigs Ann. Chem.* 251 (1889) 323.
 ²³⁾ A. Michaelis, A. Polis, *Ber. Disch. Chem. Ges.* 20 (1887) 54.
 ²⁴⁾ A. Michaelis, A. Polis, *Ber. Disch. Chem. Ges.* 20 (1887) 54.
- ²⁴⁾ G. B. Deacon, I. K. Johnson, Inorg. Nucl. Chem. Lett. 8 (1972) 271.
- ²⁵⁾ M. Veith, H. Bärnighausen, Acta Crystallogr., Sect. B, 30 (1974) 1806; H. Schumann, W. Genthe, E. Hahn, M. B. Hossein, D. v. d. Hahn, J. Organomet. Chem. 299 (1986) 67.
- ²⁶⁾ N. Walker, D. Stuart, Acta Crystallogr., Sect. A, **39** (1983) 158.

[317/89]